Description

Abies alba, the European silver fir or silver fir, is a fir native to the mountains of Europe. The bark and wood of silver fir are rich in antioxidative polyphenols. Six phenolic acids were identified (gallic, homovanillic, protocatehuic, p-hydroxybenzoic, vanillic and p-coumaric). The extract from the trunk was shown to prevent atherosclerosis in guinea pigs and to have cardioprotective effect in isolated rat hearts.

Scientific classitication

Family: Pinaceae

Genus: Abies

Common Name

Silver fir

Reference

Elena Mosca, Fernando Cruz, Jèssica Gómez-Garrido, Luca Bianco, Christian Rellstab, Sabine Brodbeck, Katalin Csilléry, Bruno Fady, Matthias Fladung, Barbara Fussi, Dušan Gömöry, Santiago C González-Martínez, Delphine Grivet, Marta Gut, Ole Kim Hansen, Katrin Heer, Zeki Kaya, Konstantin V Krutovsky, Birgit Kersten, Sascha Liepelt, Lars Opgenoorth, Christoph Sperisen, Kristian K Ullrich, Giovanni G Vendramin, Marjana Westergren, Birgit Ziegenhagen, Tyler Alioto, Felix Gugerli, Berthold Heinze, Maria Höhn, Michela Troggio, David B Neale, A Reference Genome Sequence for the European Silver Fir (Abies alba Mill.): A Community-Generated Genomic Resource, G3 Genes|Genomes|Genetics, Volume 9, Issue 7, 1 July 2019, Pages 2039–2049, https://doi.org/10.1534/g3.119.400083

Reference

Hovde BT, Daligault HE, Hanschen ER, Kunde YA, Johnson MB, Starkenburg SR, Johnson SL. Detection of Abrin-Like and Prepropulchellin-Like Toxin Genes and Transcripts Using Whole Genome Sequencing and Full-Length Transcript Sequencing of Abrus precatorius. Toxins. 2019; 11(12):691. https://doi.org/10.3390/toxins11120691

Reference

Ma, Q., Sun, T., Li, S., Wen, J., Zhu, L., Yin, T., ... & Wang, Y. N. (2020). The Acer truncatum genome provides insights into nervonic acid biosynthesis. The Plant Journal, 104(3), 662-678.

Reference

Ma, D., Guo, Z., Ding, Q., Zhao, Z., Shen, Z., Wei, M., Gao, C., Zhang, L., Li, H., Zhang, S., Li, J., Zhu, X. and Zheng, H.‐L. (2021), Chromosome‐level assembly of the mangrove plant Aegiceras corniculatum genome generated through Illumina, PacBio and Hi‐C sequencing technologies. Mol Ecol Resour.

Reference

Sun, X., Zhu, S., Li, N., Cheng, Y., Zhao, J., Qiao, X., ... & Li, B. (2020). A Chromosome-Level Genome Assembly of Garlic (Allium sativum) Provides Insights into Genome Evolution and Allicin Biosynthesis. Molecular Plant, 13(9), 1328-1339.

Reference

Griesmann M, Chang Y, Liu X, et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science. 2018;361(6398):eaat1743. doi:10.1126/science.aat1743

Reference

Jaiswal SK, Mahajan S, Chakraborty A, Kumar S, Sharma VK. The genome sequence of Aloe vera reveals adaptive evolution of drought tolerance mechanisms. iScience. 2021;24(2):102079. Published 2021 Jan 21. doi:10.1016/j.isci.2021.102079

Reference

Sun, W., Leng, L., Yin, Q., Xu, M., Huang, M., Xu, Z., ... & Chen, S. (2019). The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. The Plant Journal, 97(5), 841-857.

Reference

Liang, Y., Chen, S., Wei, K., Yang, Z., Duan, S., Du, Y., Qu, P., Miao, J., Chen, W., & Dong, Y. (2020). Chromosome Level Genome Assembly of Andrographis paniculata. Frontiers in genetics, 11, 701.

Reference

Strijk, J.S., Hinsinger, D.D., Roeder, M.M., Chatrou, L.W., Couvreur, T.L., Erkens, R.H., Sauquet, H., Pirie, M.D., Thomas, D.C. and Cao, K. (2021), Chromosome‐level reference genome of the soursop (Annona muricata): A new resource for Magnoliid research and tropical pomology. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.13353

Reference

Li, M., Zhang, D., Gao, Q. et al. Genome structure and evolution of Antirrhinum majus L. Nature Plants 5, 174–183 (2019). https://doi.org/10.1038/s41477-018-0349-9

Reference

Song, X., Sun, P., Yuan, J., Gong, K., Li, N., Meng, F., Zhang, Z., Li, X., Hu, J., Wang, J., Yang, Q., Jiao, B., Nie, F., Liu, T., Chen, W., Feng, S., Pei, Q., Yu, T., Kang, X., Zhao, W., … Wang, X. (2020). The celery genome sequence reveals sequential paleo-polyploidizations, karyotype evolution and resistance gene reduction in apiales. Plant biotechnology journal, 10.1111/pbi.13499. Advance online publication.

Reference

Li, MY., Feng, K., Hou, XL. et al. The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Hortic Res 7, 9 (2020). https://doi.org/10.1038/s41438-019-0235-2

Reference

Nong, W., Law, S., Wong, A., Baril, T., Swale, T., Chu, L. M., Hayward, A., Lau, D., & Hui, J. (2020). Chromosomal-level reference genome of the incense tree Aquilaria sinensis. Molecular ecology resources, 20(4), 971–979.

Reference

Ding, X., Mei, W., Lin, Q., Wang, H., Wang, J., Peng, S., Li, H., Zhu, J., Li, W., Wang, P., Chen, H., Dong, W., Guo, D., Cai, C., Huang, S., Cui, P., & Dai, H. (2020). Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. GigaScience, 9(3), giaa013.

Reference

Chen X, Lu Q, Liu H, et al. Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. Mol Plant. 2019;12(7):920-934. doi:10.1016/j.molp.2019.03.005

Reference

Sinha A. Peer Review Report For: First draft genome assembly of the Argane tree (Argania spinosa) [version 2; peer review: 2 approved]. F1000Research 2020, 7:1310 (https://doi.org/10.5256/f1000research.25962.r63017)

Reference

Shen, Q., Zhang, L., Liao, Z., Wang, S., Yan, T., Shi, P., ... & Lv, Z. (2018). The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Molecular plant, 11(6), 776-788.

Reference

Weitemier K, Straub SCK, Fishbein M, Bailey CD, Cronn RC, Liston A. 2019. A draft genome and transcriptome of common milkweed (Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ 7:e7649 https://doi.org/10.7717/peerj.7649

Reference

Li, S. F., Wang, J., Dong, R., Zhu, H. W., Lan, L. N., Zhang, Y. L., ... & Gao, W. J. (2020). Chromosome-level genome assembly, annotation and evolutionary analysis of the ornamental plant Asparagus setaceus. Horticulture research, 7(1), 1-11.

Reference

Hunt SP, Jarvis DE, Larsen DJ, et al. A Chromosome-Scale Assembly of the Garden Orach (Atriplex hortensis L.) Genome Using Oxford Nanopore Sequencing. Front Plant Sci. 2020;11:624. Published 2020 May 25. doi:10.3389/fpls.2020.00624

Reference

Wu, S., Sun, W., Xu, Z. et al. The genome sequence of star fruit (Averrhoa carambola). Hortic Res 7, 95 (2020).

Reference

Xie, D., Xu, Y., Wang, J. et al. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nat Commun 10, 5158 (2019). https://doi.org/10.1038/s41467-019-13185-3

Reference

Chen, S., Wang, Y., Yu, L. et al. Genome sequence and evolution of Betula platyphylla. Hortic Res 8, 37 (2021). https://doi.org/10.1038/s41438-021-00481-7

Reference

Luan M B, Jian J B, Chen P, et al. Luan, M. B., Jian, J. B., Chen, P., Chen, J. H., Chen, J. H., Gao, Q., ... & Chen, J. K. (2018). Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Molecular ecology resources, 18(3), 639-645.

Reference

Gao, Y., Wang, H., Liu, C., Chu, H., Dai, D., Song, S., ... & Tang, L. (2018). De novo genome assembly of the red silk cotton tree (Bombax ceiba). GigaScience, 7(5), giy051.

Reference

Peng X, Liu H, Chen P, et al. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. Mol Plant. 2019;12(5):661-677. doi:10.1016/j.molp.2019.01.021

Reference

Hamilton, J. P., Godden, G. T., Lanier, E., Bhat, W. W., Kinser, T. J., Vaillancourt, B., Wang, H., Wood, J. C., Jiang, J., Soltis, P. S., Soltis, D. E., Hamberger, B., & Buell, C. R. (2020). Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana. GigaScience, 9(9), giaa093.

Reference

Grassa, C. J., Wenger, J. P., Dabney, C., Poplawski, S. G., Motley, S. T., Michael, T. P., ... & Weiblen, G. D. (2018). A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content. BioRxiv, 458083.

Reference

Gao, S., Wang, B., Xie, S., Xu, X., Zhang, J., Pei, L., Yu, Y., Yang, W., & Zhang, Y. (2020). A high-quality reference genome of wild Cannabis sativa. Horticulture research, 7, 73.

Reference

Laverty, K. U., Stout, J. M., Sullivan, M. J., Shah, H., Gill, N., Holbrook, L., Deikus, G., Sebra, R., Hughes, T. R., Page, J. E., & van Bakel, H. (2019). A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome research, 29(1), 146–156.

Reference

Laverty, K. U., Stout, J. M., Sullivan, M. J., Shah, H., Gill, N., Holbrook, L., Deikus, G., Sebra, R., Hughes, T. R., Page, J. E., & van Bakel, H. (2019). A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome research, 29(1), 146–156.

Reference

Yu Xing, Yang Liu, Qing Zhang, Xinghua Nie, Yamin Sun, Zhiyong Zhang, Huchen Li, Kefeng Fang, Guangpeng Wang, Hongwen Huang, Ton Bisseling, Qingqin Cao, Ling Qin, Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima), GigaScience, Volume 8, Issue 9, September 2019, giz112, https://doi.org/10.1093/gigascience/giz112

Reference

Ye, G., Zhang, H., Chen, B., Nie, S., Liu, H., Gao, W., Wang, H., Gao, Y. and Gu, L. (2019), De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Plant J, 97: 779-794. https://doi.org/10.1111/tpj.14159

  • SUMMARY
  • Sequence Method

    Illumina HiSeq, PacBio

  • Assembly Method

    Nextdenovo3

  • Genome Size

    860.5 Mb

  • Genome Coverage

    155x

  • Contigs

    641

  • N50

    2,574,028

Reference

Shang, J., Tian, J., Cheng, H., Yan, Q., Li, L., Jamal, A., ... & Zhao, K. (2020). The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology, 21(1), 1-28.

Reference

Lv, Q., Qiu, J., Liu, J., Li, Z., Zhang, W., Wang, Q., ... & Barker, M. S. (2020). The Chimonanthus salicifolius genome provides insight into magnoliids evolution and flavonoids biosynthesis. The Plant Journal.

Reference

Lau, K. H., Bhat, W. W., Hamilton, J. P., Wood, J. C., Vaillancourt, B., Wiegert-Rininger, K., Newton, L., Hamberger, B., Holmes, D., Hamberger, B., & Buell, C. R. (2020). Genome assembly of Chiococca alba uncovers key enzymes involved in the biosynthesis of unusual terpenoids. DNA research : an international journal for rapid publication of reports on genes and genomes, 27(3), dsaa013.

Reference

Song, C., Liu, Y., Song, A., Dong, G., Zhao, H., Sun, W., ... & Niu, Y. (2018). The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular plant, 11(12), 1482-1491.

Reference

Hideki Hirakawa, Katsuhiko Sumitomo, Tamotsu Hisamatsu, Soichiro Nagano, Kenta Shirasawa, Yohei Higuchi, Makoto Kusaba, Masaji Koshioka, Yoshihiro Nakano, Masafumi Yagi, Hiroyasu Yamaguchi, Kenji Taniguchi, Michiharu Nakano, Sachiko N Isobe, De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis, DNA Research, Volume 26, Issue 3, June 2019, Pages 195–203, https://doi.org/10.1093/dnares/dsy048

Reference

Chaw, S. M., Liu, Y. C., Wu, Y. W., Wang, H. Y., Lin, C. Y. I., Wu, C. S., ... & Sudianto, E. (2019). Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nature plants, 5(1), 63-73.

Reference

Wang L, He F, Huang Y, et al. Genome of Wild Mandarin and Domestication History of Mandarin. Mol Plant. 2018;11(8):1024-1037. doi:10.1016/j.molp.2018.06.001

  • SUMMARY
  • Sequence Method

    Illumina HiSeq, PacBio

  • Assembly Method

    NextDenovo2.2-beta.0

  • Genome Size

    794.72 Mb

  • Genome Coverage

    130x

  • Scaffolds

    1309

  • Contigs

    941

  • N50

    1,321,622

Reference

Guo, C., Wang, Y., Yang, A., He, J., Xiao, C., Lv, S., ... & Guo, J. (2020). The Coix genome provides insights into Panicoideae evolution and papery hull domestication. Molecular Plant, 13(2), 309-320.

Reference

Liu, H., Shi, J., Cai, Z., Huang, Y., Lv, M., Du, H., ... & Qin, R. (2020). Evolution and domestication footprints uncovered from the genomes of coix. Molecular Plant, 13(2), 295-308.

Reference

Laforest, M., Martin, S. L., Bisaillon, K., Soufiane, B., Meloche, S., & Page, E. (2020). A chromosome-scale draft sequence of the Canada fleabane genome. Pest management science, 76(6), 2158–2169.

Reference

Song, X., Wang, J., Li, N., Yu, J., Meng, F., Wei, C., Liu, C., Chen, W., Nie, F., Zhang, Z., Gong, K., Li, X., Hu, J., Yang, Q., Li, Y., Li, C., Feng, S., Guo, H., Yuan, J., Pei, Q., … Wang, X. (2020). Deciphering the high-quality genome sequence of coriander that causes controversial feelings. Plant biotechnology journal, 18(6), 1444–1456.

Reference

Li, Y., Sun, P., Lu, Z. et al. The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Hortic Res 8, 54 (2021). https://doi.org/10.1038/s41438-021-00495-1

Reference

Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, et al. The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita. Mol Plant. 2019;12(4):506-520. doi:10.1016/j.molp.2018.12.023

Reference

Sun G, Xu Y, Liu H, et al.Sun, G., Xu, Y., Liu, H., Sun, T., Zhang, J., Hettenhausen, C., ... & Wang, L. (2018). Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nature communications, 9(1), 1-8.

Reference

Vogel A, Schwacke R, Denton A K, et al. Vogel, A., Schwacke, R., Denton, A. K., Usadel, B., Hollmann, J., Fischer, K., ... & Mayer, K. F. (2018). Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nature communications, 9(1), 1-11.J]. Nature communications, 2018, 9(1): 2515.

Reference

Soyturk, A., Sen, F., Uncu, A.T. et al. De novo assembly and characterization of the first draft genome of quince (Cydonia oblonga Mill.). Sci Rep 11, 3818 (2021). https://doi.org/10.1038/s41598-021-83113-3

Reference

Hong, Z., Li, J., Liu, X., Lian, J., Zhang, N., Yang, Z., Niu, Y., Cui, Z., & Xu, D. (2020). The chromosome-level draft genome of Dalbergia odorifera. GigaScience, 9(8), giaa084.

Reference

De-la-Cruz, I.M., Hallab, A., Olivares-Pinto, U. et al. Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant Datura stramonium (Solanaceae). Sci Rep 11, 882 (2021). https://doi.org/10.1038/s41598-020-79194-1

Reference

De-la-Cruz, I.M., Hallab, A., Olivares-Pinto, U. et al. Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant Datura stramonium (Solanaceae). Sci Rep 11, 882 (2021). https://doi.org/10.1038/s41598-020-79194-1

Reference

Han, B., Jing, Y., Dai, J., Zheng, T., Gu, F., Zhao, Q., ... & Song, C. (2020). A chromosome-level genome assembly of Dendrobium huoshanense using long reads and Hi-C data. Genome Biology and Evolution, 12(12), 2486-2490.

Reference

Siadjeu C, Pucker B, Viehöver P, Albach DC, Weisshaar B. High Contiguity de novo Genome Sequence Assembly of Trifoliate Yam (Dioscorea dumetorum) Using Long Read Sequencing. Genes. 2020; 11(3):274. https://doi.org/10.3390/genes11030274

Reference

Tamiru, M., Natsume, S., Takagi, H., White, B., Yaegashi, H., Shimizu, M., ... & Urasaki, N. (2017). Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC biology, 15(1), 86.

Reference

Tamiru, M., Natsume, S., Takagi, H., White, B., Yaegashi, H., Shimizu, M., ... & Urasaki, N. (2017). Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC biology, 15(1), 86.

Reference

Tamiru, M., Natsume, S., Takagi, H., White, B., Yaegashi, H., Shimizu, M., ... & Urasaki, N. (2017). Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC biology, 15(1), 86.

Reference

Tamiru, M., Natsume, S., Takagi, H., White, B., Yaegashi, H., Shimizu, M., ... & Urasaki, N. (2017). Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC biology, 15(1), 86.

Reference

Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, Comai L, et al. (2020) The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genet 16(2): e1008566. https://doi.org/10.1371/journal.pgen.1008566

Reference

Ding, X., Mei, W., Huang, S., Wang, H., Zhu, J., Hu, W., ... & Dai, H. (2018). Genome survey sequencing for the characterization of genetic background of Dracaena cambodiana and its defense response during dragon’s blood formation. PloS one, 13(12).

Reference

He, S., Dong, X., Zhang, G., Fan, W., Duan, S., Shi, H., Li, D., Li, R., Chen, G., Long, G., Zhao, Y., Chen, M., Yan, M., Yang, J., Lu, Y., Zhou, Y., Chen, W., Dong, Y., & Yang, S. (2020). High quality genome of Erigeron breviscapus provides a reference for herbal plants in Asteraceae. Molecular ecology resources, 10.1111/1755-0998.13257.

Reference

Shuang Jiang, Haishan An, Fangjie Xu, Xueying Zhang, Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome, GigaScience, Volume 9, Issue 3, March 2020, giaa015, https://doi.org/10.1093/gigascience/giaa015

Reference

Züst T, Strickler SR, Powell AF, et al. Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae). Elife. 2020;9:e51712. Published 2020 Apr 7. doi:10.7554/eLife.51712

Reference

Wuyun, T. N., Wang, L., Liu, H., Wang, X., Zhang, L., Bennetzen, J. L., ... & Wang, L. (2018). The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis. Molecular plant, 11(3), 429-442.

Reference

Li, Y., Wei, H., Yang, J. et al. High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis. Hortic Res 7, 183 (2020).

Reference

Yang, Y., Sun, P., Lv, L. et al. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215–222 (2020). https://doi.org/10.1038/s41477-020-0594-6

Reference

Usai, G., Mascagni, F., Giordani, T., Vangelisti, A., Bosi, E., Zuccolo, A., Ceccarelli, M., King, R., Hassani-Pak, K., Zambrano, L. S., Cavallini, A., & Natali, L. (2020). Epigenetic patterns within the haplotype phased fig (Ficus carica L.) genome. The Plant journal : for cell and molecular biology, 102(3), 600–614.

Reference

Zhang X, Wang G, Zhang S, et al. Genomes of the Banyan Tree and Pollinator Wasp Provide Insights into Fig-Wasp Coevolution. Cell. 2020;183(4):875-889.e17. doi:10.1016/j.cell.2020.09.043

Reference

Zhang X, Wang G, Zhang S, et al. Genomes of the Banyan Tree and Pollinator Wasp Provide Insights into Fig-Wasp Coevolution. Cell. 2020;183(4):875-889.e17. doi:10.1016/j.cell.2020.09.043

Reference

Li, L., Cushman, S.A., He, Y. et al. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. Hortic Res 7, 130 (2020).

Reference

Xu, Z., Pu, X., Gao, R., Demurtas, O. C., Fleck, S. J., Richter, M., ... & Hu, K. (2020). Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC biology, 18(1), 1-14.

Reference

Yuan, Y et al. (2018). The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nature communications, 9(1), 1-11.

Reference

Liu, Y., Tang, Q., Cheng, P., Zhu, M., Zhang, H., Liu, J., ... & Liu, Z. (2020). Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta Pharmaceutica Sinica B, 10(2), 374-382.

Reference

Wan, T., Liu, Z. M., Li, L. F., Leitch, A. R., Leitch, I. J., Lohaus, R., ... & Wang, W. C. (2018). A genome for gnetophytes and early evolution of seed plants. Nature Plants, 4(2), 82-89.

  • SUMMARY
  • Sequence Method

    Illumina HiSeq, PacBio

  • Assembly Method

    Nextdenovo2.0

  • Genome Size

    518.46 Mb

  • Genome Coverage

    105x

  • Scaffolds

    288

  • Contigs

    176

  • N50

    6,673,709

Reference

Kenji Nashima, Kenta Shirasawa, Andrea Ghelfi, Hideki Hirakawa, Sachiko Isobe, Takuro Suyama, Takuya Wada, Takeshi Kurokura, Tatuya Uemachi, Mirai Azuma, Midori Akutsu, Masaharu Kodama, Yoshiko Nakazawa, Kiyoshi Namai, Genome sequence of Hydrangea macrophylla and its application in analysis of the double flower phenotype, DNA Research, Volume 28, Issue 1, February 2021, dsaa026, https://doi.org/10.1093/dnares/dsaa026

Reference

Zhou, W, Wang, Y, Li, B, et al. Whole‐genome sequence data of Hypericum perforatum and functional characterization of melatonin biosynthesis by N‐acetylserotonin O‐methyltransferase. J Pineal Res. 2021; 70:e12709. https://doi.org/10.1111/jpi.12709

Reference

Kang, M., Wu, H., Yang, Q., Huang, L., Hu, Q., Ma, T., ... & Liu, J. (2020). A chromosome-scale genome assembly of Isatis indigotica, an important medicinal plant used in traditional Chinese medicine. Horticulture Research, 7(1), 1-10.

Reference

Eric L Patterson, Christopher A Saski, Daniel B Sloan, Patrick J Tranel, Philip Westra, Todd A Gaines, The Draft Genome of Kochia scoparia and the Mechanism of Glyphosate Resistance via Transposon-Mediated EPSPS Tandem Gene Duplication, Genome Biology and Evolution, Volume 11, Issue 10, October 2019, Pages 2927–2940, https://doi.org/10.1093/gbe/evz198

Reference

Yue Chang, Huan Liu, Min Liu, Xuezhu Liao, Sunil Kumar Sahu, Yuan Fu, Bo Song, Shifeng Cheng, Robert Kariba, Samuel Muthemba, Prasad S Hendre, Sean Mayes, Wai Kuan Ho, Anna E J Yssel, Presidor Kendabie, Sibo Wang, Linzhou Li, Alice Muchugi, Ramni Jamnadass, Haorong Lu, Shufeng Peng, Allen Van Deynze, Anthony Simons, Howard Yana-Shapiro, Yves Van de Peer, Xun Xu, Huanming Yang, Jian Wang, Xin Liu, The draft genomes of five agriculturally important African orphan crops, GigaScience, Volume 8, Issue 3, March 2019, giy152, https://doi.org/10.1093/gigascience/giy152

Reference

Malli, R.P.N., Adal, A.M., Sarker, L.S. et al. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. Planta 249, 251–256 (2019). https://doi.org/10.1007/s00425-018-3012-9

Reference

Chen, J., Hao, Z., Guang, X. et al. Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants 5, 18–25 (2019). https://doi.org/10.1038/s41477-018-0323-6

Reference

Auber, R. P., Suttiyut, T., McCoy, R. M., Ghaste, M., Crook, J. W., Pendleton, A. L., Widhalm, J. R., & Wisecaver, J. H. (2020). Hybrid de novo genome assembly of red gromwell (Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. Horticulture research, 7, 82.

Reference

Chen, Y. C., Li, Z., Zhao, Y. X., Gao, M., Wang, J. Y., Liu, K. W., ... & Wang, Y. D. (2020). The Litsea genome and the evolution of the laurel family. Nature communications, 11(1), 1-14.

Reference

Pu, X., Li, Z., Tian, Y., Gao, R., Hao, L., Hu, Y., He, C., Sun, W., Xu, M., Peters, R. J., Van de Peer, Y., Xu, Z., & Song, J. (2020). The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. The New phytologist, 227(3), 930–943.

  • SUMMARY
  • Published journals

    Horticulture Research

  • Publish date

    2020.08

  • Sequence Method

    Illumina HiSeq, PacBio

  • Assembly Method

    FALCON, Quiver, BWA-MEM, LACHESIS

  • Genome Size

    656.19 Mb

  • Genome Coverage

    371x

  • Scaffolds

    332

  • Contigs

    480

  • N50

    8800239

  • Bioproject

    PRJNA596077

  • Reference url

    https://www.nature.com/articles/s41438-020-00350-9

Reference

Wu, H., Zhao, G., Gong, H., Li, J., Luo, C., He, X., ... & Chen, J. (2020). A high-quality sponge gourd (Luffa cylindrica) genome. Horticulture research, 7(1), 1-10.

Reference

Dong, S., Liu, M., Liu, Y. et al. The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids. Hortic Res 8, 38 (2021). https://doi.org/10.1038/s41438-021-00471-9

Reference

Wang, P., Luo, Y., Huang, J. et al. The genome evolution and domestication of tropical fruit mango. Genome Biol 21, 60 (2020). https://doi.org/10.1186/s13059-020-01959-8

Reference

Yang Q, Bi H, Yang W, et al. The Genome Sequence of Alpine Megacarpaea delavayi Identifies Species-Specific Whole-Genome Duplication. Front Genet. 2020;11:812. Published 2020 Aug 3. doi:10.3389/fgene.2020.00812

Reference

Patil AB, Shinde SS, Raghavendra S, Satish BN, Kushalappa CG, Vijay N. The genome sequence of Mesua ferrea and comparative demographic histories of forest trees. Gene. 2021;769:145214. doi:10.1016/j.gene.2020.145214

Reference

Liu, B., Yan, J., Li, W. et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat Commun 11, 340 (2020). https://doi.org/10.1038/s41467-019-13926-4

Reference

Griesmann M, Chang Y, Liu X, et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science. 2018;361(6398):eaat1743. doi:10.1126/science.aat1743

Reference

Matsumura, H., Hsiao, M. C., Lin, Y. P., Toyoda, A., Taniai, N., Tarora, K., Urasaki, N., Anand, S. S., Dhillon, N., Schafleitner, R., & Lee, C. R. (2020). Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proceedings of the National Academy of Sciences of the United States of America, 117(25), 14543–14551.

Reference

Cui, J., Yang, Y., Luo, S. et al. Whole-genome sequencing provides insights into the genetic diversity and domestication of bitter gourd (Momordica spp.). Hortic Res 7, 85 (2020).

Reference

Yue Chang, Huan Liu, Min Liu, Xuezhu Liao, Sunil Kumar Sahu, Yuan Fu, Bo Song, Shifeng Cheng, Robert Kariba, Samuel Muthemba, Prasad S Hendre, Sean Mayes, Wai Kuan Ho, Anna E J Yssel, Presidor Kendabie, Sibo Wang, Linzhou Li, Alice Muchugi, Ramni Jamnadass, Haorong Lu, Shufeng Peng, Allen Van Deynze, Anthony Simons, Howard Yana-Shapiro, Yves Van de Peer, Xun Xu, Huanming Yang, Jian Wang, Xin Liu, The draft genomes of five agriculturally important African orphan crops, GigaScience, Volume 8, Issue 3, March 2019, giy152, https://doi.org/10.1093/gigascience/giy152

Reference

Jiao, F., Luo, R., Dai, X., Liu, H., Yu, G., Han, S., Lu, X., Su, C., Chen, Q., Song, Q., Meng, C., Li, F., Sun, H., Zhang, R., Hui, T., Qian, Y., Zhao, A., & Jiang, Y. (2020). Chromosome-Level Reference Genome and Population Genomic Analysis Provide Insights into the Evolution and Improvement of Domesticated Mulberry (Morus alba). Molecular plant, 13(7), 1001–1012.

Reference

Gui, S., Peng, J., Wang, X., Wu, Z., Cao, R., Salse, J., Zhang, H., Zhu, Z., Xia, Q., Quan, Z., Shu, L., Ke, W., & Ding, Y. (2018). Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. The Plant journal : for cell and molecular biology, 94(4), 721–734.

Reference

Gui, S., Peng, J., Wang, X., Wu, Z., Cao, R., Salse, J., Zhang, H., Zhu, Z., Xia, Q., Quan, Z., Shu, L., Ke, W., & Ding, Y. (2018). Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. The Plant journal : for cell and molecular biology, 94(4), 721–734.

Reference

Shi, T., Rahmani, R. S., Gugger, P. F., Wang, M., Li, H., Zhang, Y., Li, Z., Wang, Q., Van de Peer, Y., Marchal, K., & Chen, J. (2020). Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Molecular biology and evolution, 37(8), 2394–2413.

Reference

Bornowski, N., Hamilton, J. P., Liao, P., Wood, J. C., Dudareva, N., & Buell, C. R. (2020). Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA research : an international journal for rapid publication of reports on genes and genomes, 27(3), dsaa016.

Reference

Rai, A., Hirakawa, H., Nakabayashi, R., Kikuchi, S., Hayashi, K., Rai, M., Tsugawa, H., Nakaya, T., Mori, T., Nagasaki, H., Fukushi, R., Kusuya, Y., Takahashi, H., Uchiyama, H., Toyoda, A., Hikosaka, S., Goto, E., Saito, K., & Yamazaki, M. (2021). Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nature communications, 12(1), 405. https://doi.org/10.1038/s41467-020-20508-2

Reference

Bornowski, N., Hamilton, J. P., Liao, P., Wood, J. C., Dudareva, N., & Buell, C. R. (2020). Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA research : an international journal for rapid publication of reports on genes and genomes, 27(3), dsaa016.

Reference

Bornowski, N., Hamilton, J. P., Liao, P., Wood, J. C., Dudareva, N., & Buell, C. R. (2020). Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA research : an international journal for rapid publication of reports on genes and genomes, 27(3), dsaa016.

Reference

Yang, X., Yue, Y., Li, H. et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Hortic Res 5, 72 (2018). https://doi.org/10.1038/s41438-018-0108-0

Reference

Lv, S, Cheng, S, Wang, Z, et al. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecol Evol. 2020; 10: 4518– 4530. https://doi.org/10.1002/ece3.5965

Reference

Kim, N. H., Jayakodi, M., Lee, S. C., Choi, B. S., Jang, W., Lee, J., ... & Lee, Y. S. (2018). Genome and evolution of the shade‐requiring medicinal herb Panax ginseng. Plant biotechnology journal, 16(11), 1904-1917.

Reference

Fan, G., Fu, Y., Yang, B., Liu, M., Zhang, H., Liang, X., ... & Shao, L. (2018). Sequencing of Panax notoginseng genome reveals genes involved in disease resistance and ginsenoside biosynthesis. bioRxiv, 362046.

Reference

Fan, G., Liu, X., Sun, S., Shi, C., Du, X., Han, K., Yang, B., Fu, Y., Liu, M., Seim, I., Zhang, H., Xu, Q., Wang, J., Su, X., Shao, L., Zhu, Y., Shao, Y., Zhao, Y., Wong, A. K., Zhuang, D., … Lee, S. M. (2020). The Chromosome Level Genome and Genome-wide Association Study for the Agronomic Traits of Panax Notoginseng. iScience, 23(9), 101538.

Reference

Jiang, Z., Tu, L., Yang, W., Zhang, Y., Hu, T., Ma, B., . . . Gao, W. (2020). The Chromosome-Level Reference Genome Assembly for Panax notoginseng and Insights into Ginsenoside Biosynthesis. Plant Communications, 100113.

Reference

Yang, Z., Liu, G., Zhang, G., Yan, J., Dong, Y., Lu, Y., Fan, W., Hao, B., Lin, Y., Li, Y., Li, X., Tang, Q., Xiang, G., He, S., Chen, J., Chen, W., Xu, Z., Mao, Z., Duan, S., Jin, S.and Yang, S. (2021) The chromosome‐scale high quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis. Plant Biotechnol J, https://doi.org/10.1111/pbi.13558

  • SUMMARY
  • Sequence Method

    Illumina HiSeq, PacBio

  • Assembly Method

    Nextdenovo2.0

  • Genome Size

    1,590 Mb

  • Genome Coverage

    70x

  • Contigs

    2894

  • N50

    684,436

Reference

Guo, L., Winzer, T., Yang, X., Li, Y., Ning, Z., He, Z., ... & Ye, K. (2018). The opium poppy genome and morphinan production. Science, 362(6412), 343-347.

Reference

Li, Q., Ramasamy, S., Singh, P., Hagel, J. M., Dunemann, S. M., Chen, X., Chen, R., Yu, L., Tucker, J. E., Facchini, P. J., & Yeaman, S. (2020). Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nature communications, 11(1), 1190.

Reference

Li, J., Lv, M., Du, L., Yunga, A., Hao, S., Zhang, Y., ... & Zhang, X. (2020). An enormous Paris polyphylla genome sheds light on genome size evolution and polyphyllin biogenesis. bioRxiv.

  • SUMMARY
  • Published journals

    Horticulture Research

  • Publish date

    2021.01

  • Sequence Method

    Oxford Nanopore, Illumina NovaSeq, Hi-C

  • Assembly Method

    NextDenovo,Smartdenovo

  • Genome Size

    1,332.18 Mb

  • Genome Coverage

    222.43x

  • N50

    3,100,000

  • Reference url

    https://www.nature.com/articles/s41438-020-00455-1#citeas

Reference

Xia, Z., Huang, D., Zhang, S. et al. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims). Hortic Res 8, 14 (2021).

Reference

Neller KCM, Diaz CA, Platts AE, Hudak KA. De novo Assembly of the Pokeweed Genome Provides Insight Into Pokeweed Antiviral Protein (PAP) Gene Expression. Front Plant Sci. 2019;10:1002. Published 2019 Aug 6. doi:10.3389/fpls.2019.01002

Reference

Hu, L., Xu, Z., Wang, M., Fan, R., Yuan, D., Wu, B., ... & Sim, S. (2019). The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature communications, 10(1), 1-11.

Reference

Zeng, L., Tu, XL., Dai, H. et al. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biol 20, 79 (2019). https://doi.org/10.1186/s13059-019-1686-3

Reference

Kreplak, J., Madoui, MA., Cápal, P. et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet 51, 1411–1422 (2019). https://doi.org/10.1038/s41588-019-0480-1

Reference

Kim, J., Kang, S. H., Park, S. G., Yang, T. J., Lee, Y., Kim, O. T., ... & Lee, K. (2020). Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. Horticulture research, 7(1), 1-12.

  • SUMMARY
  • Sequence Method

    Illumina HiSeq, PacBio

  • Assembly Method

    Nextdenovo2.0

  • Genome Size

    532 Mb

  • Genome Coverage

    146x

  • Scaffolds

    2981

  • Contigs

    2484

  • N50

    527,227

Reference

He, Y., Peng, F., Deng, C., Xiong, L., Huang, Z. Y., Zhang, R. Q., ... & Peng, C. (2018). Building an octaploid genome and transcriptome of the medicinal plant Pogostemon cablin from Lamiales. Scientific data, 5(1), 1-11.

Reference

Li, C., Zhang, Y., Zheng, L., Zheng, Y., Huang, P., Xiao, X., ... & Wang, X. (2019). Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Frontiers in plant science, 10, 1274.

Reference

Peng, Z., Bredeson, J.V., Wu, G.A., Shu, S., Rawat, N., Du, D., Parajuli, S., Yu, Q., You, Q., Rokhsar, D.S., Gmitter, F.G., Jr and Deng, Z. (2020), A chromosome‐scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. Plant J, 104: 1215-1232. https://doi.org/10.1111/tpj.14993

Reference

Ma, J., Wan, D., Duan, B., Bai, X., Bai, Q., Chen, N. and Ma, T. (2019), Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnol J, 17: 451-460. https://doi.org/10.1111/pbi.12989

Reference

Buti, M., Moretto, M., Barghini, E., Mascagni, F., Natali, L., Brilli, M., ... & Velasco, R. (2018). The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). GigaScience, 7(4), giy010.

Reference

Chaoyang Liu, Chao Feng, Weizhuo Peng, Jingjing Hao, Juntao Wang, Jianjun Pan, Yehua He, Chromosome-level draft genome of a diploid plum (Prunus salicina), GigaScience, Volume 9, Issue 12, December 2020, giaa130, https://doi.org/10.1093/gigascience/giaa130

Reference

Feng, C., Feng, C., Lin, X., Liu, S., Li, Y. and Kang, M. (2020) A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava (Psidium guajava). Plant Biotechnol J.

Reference

Kristian A Stevens, Keith Woeste, Sandeep Chakraborty, Marc W Crepeau, Charles A Leslie, Pedro J Martínez-García, Daniela Puiu, Jeanne Romero-Severson, Mark Coggeshall, Abhaya M Dandekar, Daniel Kluepfel, David B Neale, Steven L Salzberg, Charles H Langley, Genomic Variation Among and Within Six Juglans Species, G3 Genes|Genomes|Genetics, Volume 8, Issue 7, 1 July 2018, Pages 2153–2165, https://doi.org/10.1534/g3.118.200030

Reference

Yang, FS., Nie, S., Liu, H. et al. Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nat Commun 11, 5269 (2020). https://doi.org/10.1038/s41467-020-18771-4

Reference

Raymond, O., Gouzy, J., Just, J. et al. The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50, 772–777 (2018). https://doi.org/10.1038/s41588-018-0110-3

Reference

Bornowski, N., Hamilton, J. P., Liao, P., Wood, J. C., Dudareva, N., & Buell, C. R. (2020). Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA research : an international journal for rapid publication of reports on genes and genomes, 27(3), dsaa016.

Reference

Zheng, X., Chen, D., Chen, B., Liang, L., Huang, Z., Fan, W., Chen, J., He, W., Chen, H., Huang, L., Chen, Y., Zhu, J. and Xue, T. (2021), Insights into salvianolic acid B biosynthesis from chromosome‐scale assembly of the Salvia bowleyana genome. J Integr Plant Biol. Accepted Author Manuscript. https://doi.org/10.1111/jipb.13085

Reference

Ai-Xiang Dong, Hai-Bo Xin, Zi-Jing Li, Hui Liu, Yan-Qiang Sun, Shuai Nie, Zheng-Nan Zhao, Rong-Feng Cui, Ren-Gang Zhang, Quan-Zheng Yun, Xin-Ning Wang, Fatemeh Maghuly, Ilga Porth, Ri-Chen Cong, Jian-Feng Mao, High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant, GigaScience, Volume 7, Issue 7, July 2018, giy068, https://doi.org/10.1093/gigascience/giy068

Reference

Mahesh, H. B., Subba, P., Advani, J., Shirke, M. D., Loganathan, R. M., Chandana, S. L., ... & Gowda, M. (2018). Multi-omics driven assembly and annotation of the sandalwood (Santalum album) genome. Plant physiology, 176(4), 2772-2788.

Reference

Dasgupta, M. G., Ulaganathan, K., Dev, S. A., & Balakrishnan, S. (2019). Draft genome of Santalum album L. provides genomic resources for accelerated trait improvement. Tree Genetics & Genomes, 15(3), 34.

Reference

Zhao, Q., Yang, J., Cui, M. Y., Liu, J., Fang, Y., Yan, M., ... & Weng, J. K. (2019). The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis. Molecular plant, 12(7), 935-950.

Reference

Xu, Z., Gao, R., Pu, X., Xu, R., Wang, J., Zheng, S., Zeng, Y., Chen, J., He, C., & Song, J. (2020). Comparative Genome Analysis of Scutellaria baicalensis and Scutellaria barbata Reveals the Evolution of Active Flavonoid Biosynthesis. Genomics, proteomics & bioinformatics, S1672-0229(20)30126-1.

  • SUMMARY
  • Published journals

    Horticulture Research

  • Publish date

    2021.01

  • Sequence Method

    Illumina, Nanopore

  • Assembly Method

    Canu

  • Genome Size

    608.17 Mb

  • Genome Coverage

    151x

  • Scaffolds

    103

  • Contigs

    473

  • N50

    8400000

  • GC%

    38.71

  • Bioproject

    PRJNA640239

  • Reference url

    https://www.nature.com/articles/s41438-021-00487-1

Reference

Fu, A., Wang, Q., Mu, J. et al. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. Hortic Res 8, 35 (2021). https://doi.org/10.1038/s41438-021-00487-1

Reference

Xu, Z., Xin, T., Bartels, D., Li, Y., Gu, W., Yao, H., ... & Xu, J. (2018). Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance. Molecular plant, 11(7), 983-994.

Reference

Kang, S. H., Pandey, R. P., Lee, C. M., Sim, J. S., Jeong, J. T., Choi, B. S., ... & Oh, T. J. (2020). Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nature communications, 11(1), 1-11.

Reference

Peter M Thielen, Amanda L Pendleton, Robert A Player, Kenneth V Bowden, Thomas J Lawton, Jennifer H Wisecaver, Reference Genome for the Highly Transformable Setaria viridis ME034V, G3 Genes|Genomes|Genetics, Volume 10, Issue 10, 1 October 2020, Pages 3467–3478, https://doi.org/10.1534/g3.120.401345

Reference

Kumari P, Singh KP, Rai PK. Draft genome of multiple resistance donor plant Sinapis alba: An insight into SSRs, annotations and phylogenetics. PLoS One. 2020;15(4):e0231002. Published 2020 Apr 9. doi:10.1371/journal.pone.0231002

Reference

Xia, M., Han, X., He, H., Yu, R., Zhen, G., Jia, X., ... & Deng, X. W. (2018). Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo. Gigascience, 7(6), giy067.

Reference

Natascha van Lieshout, Ate van der Burgt, Michiel E de Vries, Menno ter Maat, David Eickholt, Danny Esselink, Martijn P W van Kaauwen, Linda P Kodde, Richard G F Visser, Pim Lindhout, Richard Finkers, Solyntus, the New Highly Contiguous Reference Genome for Potato (Solanum tuberosum), G3 Genes|Genomes|Genetics, Volume 10, Issue 10, 1 October 2020, Pages 3489–3495, https://doi.org/10.1534/g3.120.401550

Reference

Qin, S., Wu, L., Wei, K., Liang, Y., Song, Z., Zhou, X., ... & Hui, Y. (2019). A draft genome for Spatholobus suberectus. Scientific data, 6(1), 1-9.

Reference

Xu, W., Zhang, L., Cunningham, A. B., Li, S., Zhuang, H., Wang, Y., & Liu, A. (2020). Blue genome: chromosome-scale genome reveals the evolutionary and molecular basis of indigo biosynthesis in Strobilanthes cusia. The Plant journal : for cell and molecular biology, 104(4), 864–879.

  • SUMMARY
  • Sequence Method

    Illumina HiSeq, PacBio

  • Assembly Method

    Nextdenovo2

  • Genome Size

    569.5 Mb

  • Genome Coverage

    153x

  • Contigs

    436

  • N50

    7,666,495

Reference

Ji, Y.‐T., Xiu, Z., Chen, C.‐H., Wang, Y., Yang, J.‐X., Sui, J.‐J., Jiang, S.‐J., Wang, P., Yue, S.‐Y., Zhang, Q.‐Q., Jin, J.‐l., Wang, G.‐S., Wei, Q.‐Q., Wei, B., Wang, J., Zhang, H.‐L., Zhang, Q.‐Y., Liu, J., Liu, C.‐J., Jian, J.‐B. and Qu, C.‐Q. (2021), Long read sequencing of Toona sinensis (A. Juss) Roem: a chromosome‐level reference genome for the Meliaceae family. Molecular Ecology Resources. Accepted Author Manuscript.

Reference

Chellappan, B. V., Shidhi, P. R., Vijayan, S., Rajan, V. S., Sasi, A., & Nair, A. S. (2019). High quality draft genome of Arogyapacha (Trichopus zeylanicus), an important medicinal plant endemic to Western Ghats of India. G3: Genes, Genomes, Genetics, 9(8), 2395-2404.

  • SUMMARY
  • Published journals

    Horticulture Research

  • Publish date

    2020.12

  • Sequence Method

    Nanopore, Illumina HiSeq, Hi-C

  • Assembly Method

    Canu, SMARTdenovo

  • Genome Size

    919.8 Mb

  • Genome Coverage

    172.1x

  • Scaffolds

    69

  • Contigs

    202

  • N50

    20110000

  • GC%

    7.1

  • Bioproject

    PRJNA640193

  • Reference url

    https://www.nature.com/articles/s41438-020-00423-9#Sec2

Reference

Ma, L., Wang, Q., Mu, J. et al. The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening. Hortic Res 7, 199 (2020).

Reference

Tu, L., Su, P., Zhang, Z., Gao, L., Wang, J., Hu, T., Zhou, J., Zhang, Y., Zhao, Y., Liu, Y., Song, Y., Tong, Y., Lu, Y., Yang, J., Xu, C., Jia, M., Peters, R. J., Huang, L., & Gao, W. (2020). Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nature communications, 11(1), 971.

Reference

Peng Cui, Qiang Lin, Dongming Fang, Lingling Zhang, Rongjun Li, Junyong Cheng, Fei Gao, Jay Shockey, Songnian Hu, Shiyou Lü, Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid β-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds, Plant and Cell Physiology, Volume 59, Issue 10, October 2018, Pages 1990–2003, https://doi.org/10.1093/pcp/pcy117

Reference

Wang, Y., Xin, H., Fan, P., Zhang, J., Liu, Y., Dong, Y., Wang, Z., Yang, Y., Zhang, Q., Ming, R., Zhong, G.‐Y., Li, S. and Liang, Z. (2021), The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine. Plant J, 105: 1495-1506. https://doi.org/10.1111/tpj.15127

Reference

Qiang Liang, Huayang Li, Shouke Li, Fuling Yuan, Jingfeng Sun, Qicheng Duan, Qingyun Li, Rui Zhang, Ya Lin Sang, Nian Wang, Xiangwen Hou, Ke Qiang Yang, Jian Ning Liu, Long Yang, The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge), GigaScience, Volume 8, Issue 6, June 2019, giz071, https://doi.org/10.1093/gigascience/giz071